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ABSTRACT

A graphical method is presented for the calculation of charge
collection by diffusion from an ion track in a silicon device.
Graphical data are provided for several device geometries. The
ion track location/orientation is arbitrary.
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1. Introduction

A graphical method estimates collected charge, predicted by the
linear diffusion equation, produced by an ion track in a simple
silicon structure consisting of a uniformly doped substrate
bounded by a collection of reflective (insulated) boundary sur-
faces and a collection of sinks for excess carriers. Each sink
simulates some structure such as a reverse-biased depletion
region (DR) boundary (DRB) or an ohmic contact (electrode) . Bulk
recombination is neglected and all recombination is assumed to be
on the sink boundaries. This is often an adequate approximation.
When in doubt, the discussion in Sectj.on 4 may help (Auger recom-
bination is briefly mentioned in Section 6). The theory can
easily be generalized to include bulk recombination losses (as
pointed out in Section 7), but the required graphical data are
not provided here.

The linear diffusion equation has been used in the past to
predict currents at DRB~s produced by lightly ionizing particles
such as alpha particles [1,2]. Heavier particles are able to
collapse a DR to the extent that funneling [3,4] may become
important. But even when funneling necessitates use of the non-
linear drift/diffusion equations, the solution still requires
that we know how to estimate currents predicted by the linear
diffusion equation (among other things) [5]. Therefore, this
equation will often find applications in the analysis of ion-
induced currents.

Several variations of this problem have been solved in the
past. Wouters [1] and Kirkpatrick [2] have both treated the
problem in which the upper substrate surface contains a suffi-
ciently high density of DR’s so that the entire upper surface can
be approximated as a sink. Reference [6] treated the problem in
which the upper surface contains one isolated DR. Only total
collected charge was estimated in Reference [6]. No collection
time was estimated, but it was still possible to include bulk re-
combination losses. However, the Reference [6] method has limita-
tions. The lower substrate surface (electrode) must be far below
the ion track and the track cannot be too close to the DR. The
present analysis removes these restrictions, but a new limitation
is that recombination in the substrate interior must have a
negligible effect on the collected charge of interest. In theo-
ry, there are no restrictions on the substrate or track geome-
tries (except that it be okay to neglect recombination in the
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substrate interior) . In practice, charge collection estimates can
be obtained for any substrate geometry such that equipotential
surfaces (associated with Laplacets equation) have been plotted.
Examples are in the appendix. Total (time integrated from zero to
infinity) collected charge is rigorously quantified for arbitrary
geometries. An estimate of the time duration of charge collection
is derived for arbitrary geometries, but explicitly evaluated
only for one-dimensional and spherical geometries. This estimate
includes the influence of boundary surfaces. In one extreme case,
boundary surfaces have little influence and the estimate reduces
to the traditional estimate (the square of the source-to-
destination distance, divided by the diffusic}n coefficient). In
the opposite extreme, boundary surfaces have a strong influence,
and charge collection is six times faster than indicated by the
traditional estimate. Physical and statistical explanations are
given.

2. Analysis

Figure 1 shows a simple geometry, consisting of one upper sink
(representing a DRB) above a flat lower sink (representing an
electrode) . More generally, the substrate is bounded by any
collection of sinks which are separated by reflective surfaces.
Let S2 denote the surface that collected charge is to be calcu-
lated for. If we want to know the charge collected by a particu-
lar DRB, then S2 is that DRB. If we want to know the sum of the
charges collected by a set of DRBIs, then S2 is the union of that
set of DRB’s. Let S1 be the union of all remaining sink bound-
aries. Let P denote the excess carrier density (assumed to be the
same for minority and majority carriers) . The linear diffusion
equation is assumed to apply, so P is governed by the boundary
value problem

D div grad P = 6P/&t in substrate

P o= on S1 and on S2

(la)

(lb)

P = pl a t t = O (lC)
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Figure 1: A simple geometry. A single sink S2 (possibly a DRB) is
above an infinite plane sink S1 (an ohmic contact) .
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where S/&t denotes partial derivative with respect to time and PI
is the density of electron-hole (e-h) pairs liberated by the ion.
The diffusion coefficient D is assumed to be a constant. Reflec-
tive boundary conditions are assumed on the reflective bound-
aries. The diffusion current at S2 is denoted I(t) and defined by

where q
surface
I(t) is
defined

I(t) =-qD grad P ● ds (2)
J S2

is the elementary charge. The unit normal vector in the
integral is directed outward from the substrate, so that
positive. The collected charge at S2 is denoted Q and
by

IU3

Q= I(t) dt. .
0

(3)

Q can be calculated without explicitly solving for P, but it is
necessary to solve for the potential fl, which is the solution to
Laplacets equation satisfying

div grad fl = O in substrate

1-1o= on S1 and 11 = 1 on S2

(4a)

(4b)

with reflective boundary conditions assumed on the reflective
boundaries. The potential fl, which has nothing to do with carrier
density, is created in the physically unrelated problem in which
the substrate satisfies Ohm’s law with a uniform conductivity and
a unit potential is applied to S2 with S1 grounded. Because n
does not depend on the initial carrier density, it only has to be
solved once for each geometry. The same fl is used to calculate Q
for all ion tracks. To see how this is done, use (1), (2), (4),
and the divergence theorem to get



, ,

- I(t) /(q D) =
J
flgradP”ds-

1
P grad S1

=
I

n div grad P d3x == (l/D)

where surface integrals without. subscripts
boundary, and the volume integrals are over
grating in t gives

Q=q I n PI d3x .

“ ds

I n 6P/6t d3x (5)

are over the closed
the substrate. Inte-

(6)

The integral in (6) can be evaluated numerically. Select a number
M. Then select a set of numbers vi satisfying O=vo<vl<. ..<vM=l.
For each i=l, . . . . M, define the region Ri by

‘i = the region between the fl == vi-l equipotential
surface and the fl = Vi equipotential surface.

The integral in (6) can be written as

M

~

M
Q ‘SIX nP1d3x=qx

1
[(vi + vi-1)/21 ~ PI d3x

i.=1 Ri
i=l i

where the approximation on the far right can be made as accurate
as we want by using a sufficiently fine partition. For each
i=l, . . . . M, define ni by

‘i = number of e-h pairs initially liberated between
the n = ‘i-1 surface and the n = vi surface. (7)
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The equation for Q becomes

M
Q ~ CJ Z [(Vi +“ vi-1)/21 ni ●

i=l
(8)

With an initial track density PI given, all that is needed to
calculate Q is a plot of the ~ equipotential surfaces so that
each ni can be calculated from (7).

3. Discussion of the Fiqures and an Example

Collected charge can be calculated from (7) and (8) if we have
figures showing constant O surfaces. Some figures are provided in
the appendix for the case in which the sink of interest S2 is a
flat circular disk. The figures can also be used to represent
other ‘!unflat” circular shapes, but this is discussed later. For
the time being, S2 is imagined to be a flat disk of diameter DI.
Several variations of this geometry, characterized by the
presence or absence of other structures, are discussed below.

The simplest geometry is that in which S2 is very far from all
other structures. It lies in a horizontal reflective plane and S1
is at infinity, below an infinitely thick substrate. Constant fl
surfaces are well known for this geometry and are represented by
contours in Figure Al (appendix) . The axis of symmetry is in the
plane of the page and double lines represent reflective bound-
aries. All contours intersect the reflective boundary at right
angles, but limited plotting resolution does not make this visi-
ble in the figure. The inset ‘~DI=4 min. div.” means that the disk
diameter is four minor divisions, which can represent any physi-
cal distance. Contour labels are the n values. The 1.0 contour is

S2 “ Contours outside of the 0.1 contour are nearly circular. If
desired, the plot can be extended to greater distances by drawing
circles and assigning n values from the equation Sl~(l/m) (DI/r),
where the radial distance r is measured in the same units that DI
is measured in.

An ion track is not shown in the figure because it is supplied
by the user. This simple geometry cannot be used if the track is
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too long, even if DI is much smaller than all other relevant
dimensions. Other relevant dimensions, denoted collectively as
OD , are diffusion length, substrate thickness, and distance
between S2 and other structures in the horizontal plane (e.g.,
other DRBIs) . As track length increases without bound, predicted
collected charge also increases without bound, becoming singular
as the logarithm of the track length. At least one of the OD must
be recognized as finite, and a different figure is needed (dis-
cussed below) .

A common situation in which the simplest geometry is inappro-
priate occurs when S2 is a member of an array of DRB’s~ with the
array dense enough to influence charge collection at S2. The
union of all DRB’s, except S2, is S1. The potential fl is derived
from the electrostatics problem in which one disk, S2, is at unit
potential and is surrounded by a dense array of grounded struc-
tures. Let SP be the nearest neighbor spacing, measured from
closest point to closest point. The grounded array will screen
most of the potential produced by S2 if the observation Point is
in the horizontal plane and more than a distance SP from S2. The
grounded array is simulated by grounding the entire section of
the horizontal plane where r>(l/2)DI+SP, with the radial coordi-
nate r measured from the center of S2. The surface S1 now becomes
this planer section. The simplified boundary conditions governing
fl now become rl=l on the planer section where r<(l/2)DI (which is
S2), n=O on the.planer section where r>(l/2)DI+SP (which is S1),
and with reflective boundary conditions on the planer section
between S2 and S1. We will pretend that this is the original
problem that was to be solved, so that we do not have to call
this an approximation. But even this problem will only be approx-
imately solved.

An approximate solution is obtained by starting with the poten-
tial function for an isolated disk and then using the method of
inversion [7] to construct a second solution to Laplace’s equa-
tion. An appropriate superposition of these two solutions, denot-
ed ~, will approximately satisfy the required boundary condi-
tions. Note that n is the exact solution for some geometry,
although not the intended geometry. By tracing equipotential sur-
faces to find out where fl=l and where n=O, we determine the
geometry that II exactly fits. The 1.0 surface in any figure in
the appendix is the actual S2, i.e., the surface where fl really
is 1, as opposed to the surface where fl was intended to be 1.
Similarly for S1. Figures A2, A3, and A4 show fi contours con-
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strutted by this method for several values of the ratio SP/DI.
Because the intended boundary conditions are not exactly satis-
fied, S2 and S1 are not perfectly flat, but they are flat enough
(especially S2).

Figures A2, A3, and A4 have different parts (e.g. , an “a” and
“b” part for Figure A2) showing different levels of magnifica-
tion. In each case, the last contour plotted resembles that for
an electric dipole, so that simple analytical fits can be used to
extend the plots beyond the ranges shown. For example, at loca-

tions outside of the O.O2 contour in Figure A2, the extension is
given by fl=0.02(zc/r)2cos@,  where r and @ are the obvious coordi-
nates and Zc is the distance on the axis of symmetry from S2 to
the 0.02 contour, measured in the same units that r is measured
in. Similar extensions apply to Figures A3 and A4.

Another interesting geometry is the same as that just consid-
ered, except that the “substrate” is an epi layer. There is now a
reflective plane some distance L below the plane that S2 and S1
lie in. Another approximation is used to obtain fl. By starting
with the n derived for the previous problem and adding an appro-
priate translation (or image) of the same function, reflective
boundary conditions will be satisfied on the lower plane. An
appropriate series of translated functions will satisfy all
required reflective boundary conditions, but boundary values at
the locations where S2 and S1 are intended to be are disturbed.
Suitably chosen multiplicative and additive constants help a
little, and produce the fl used for this problem. As before, ~ is
the exact solution for some geometry, although not the intended
geometry. Figures A5 through AIO show fl contours constructed by
this method for several values of SP/DI and L/DI. Because the
intended boundary conditions are not exactly satisfied, S1 is not
very flat. The most extreme cases, shown in the figures, of an
“unflat” S1 are in Figures A9 and A1O. But even if S1 was the
planer section that it was supposed to be, the potential would
still be rapidly attenuated as the observation point moves under
s~o It should not make much difference how flat S1 is in these
extreme cases. In general, the SP/DI and L/DI ratios such that S1
deviates most from its intended shape are also the ratios such
that the shape of S1 is least important. Only one level of magni-
fication is shown for Figures A5 through AlO. The high density of
contours will
are labeled.
reminders are

cause the figures to be too crowded if all contours
The pattern of contour values is consistent, and
included in the figure captions.
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The figures offer additional flexibility by renormalizing the
equipotential surfaces. DRBs are not really flat and if we do not
want to approximate a given DRB as being flat, then it will not
fit any of the sinks in the figures. But it might fit the 0.5
surface (for example) in one of the figures. By renormalizing,
the 0.5 surface becomes the 1.0 surface (S2), while the 0.4
surface becomes the 0.8 surface, etc. Another possible motivation
for renormalizing is to obtain SP/DI ratios other than those
listed in the figures. By renormalizing,  a few figures can be
made to represent a lot of different geometries.

Calculation of Q is especially convenient if the ion track has
a uniform linear density and can be sketched into one of the fig-
ures. This can only be done if the track is in some plane con-
taining the axis of symmetry. The most versatile approach for any
other conditions is to approximate the track as a superposition
of discrete points and treat each point individually. An example
may help to clarify the calculation, and is shown in Figure 2.
This is the same as Figure Al except that a physical dimension (a
4 pm disc diameter) was assigned, and a track was sketched into
the figure. For simplicity, the track lies in the plane of the
page so that it can be sketched into the figure. The sink of
interest is a flat disk, so renormalizing is unnecessary. The
track conveniently ends at the 0.1 contour. If the track was
longer, we could extend the plot by drawing some circles. The
track has a uniform linear density of 6.47x104/pm, corresponding
to a linear energy transfer (LET) of 1 MeV-cm2/mg in silicon
(assuming that each 3.6 eV of deposited energy liberates one
electron-hole pair) . If we want the LET to be 40 instead of 1, we
simply multiply the calculated value of Q by 40. By using the
tick marks in the figure to make a paper ruler and literally
measuring line segments in the figure, we find that about 2.8 pm
of track is between the t_l=O.4 and the 0=0.5 equipotential sur-
faces. The number of initial minority carriers (or e-h pairs)

5. We multiply this numberbetween these surfaces is about 1.8x1O
by the average contour value, which is 0.45, to obtain one of the
terms in (8), i.e., about 45% of this group of carriers will
reach S2. The same procedure is applied to the other track sec-
tions and the terms are added. The result is
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Figure 2: An example used to illustrate how Q can be calculated.
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Q % q [ (0.45)(1.8x105) + (0.36) (9.1xI.04) + (0.285) (1.0x105)

+ (0.225) (1.0x105) + (0.175) (1.5x105) + (0.125) (3.0x105)]

= 3.7X10-14 Coul.

4. Assessinq the Importance of Recombination

It is not always obvious whether or not it is okay to neglect
recombination, because the importance of recombination can depend
on which sink charge collection is to be calculated for. Even if
many carriers recombine, charge collection at S2 will not be
strongly effected by recombination if few of these lost carriers
would have reached S2 anyway (i.e.~ if they would have gone to S1

instead) . Recombination can be neglected if most charge collec-
tion at S2 is from carriers initially close to S2, compared to
the diffusion length. Whether or not this condition is satisfied
can be determined by first calculating Q with recombination
neglected, as was done in the example in the previous section.
Then determine what fraction of Q came from carriers initially
within some fraction (let us say 1/2 to be definite) of a diffu-
sion length from S2. If this fraction of Q is nearly all of Q, it
is okay to neglect recombination. Otherwise, we have a problem. A
solution, pointed out in Section 7, is to construct more figures,
but such figures are not provided here.

5. Averaqe Arrival Time

The objective of this section is to get an order of magnitude
estimate of the time duration of charge collection at S2. Each
carrier group in (7) contributes additively to the current, so we
can get a picture of the time dependence of charge collection
from the combined groups if we start with a picture of the time
dependence of collected charge for each individual group. It is
therefore sufficiently general to consider a single group, i.e.,
to assume that all carriers are initially liberated close to some
point xs, which will be called the source coordinate. A statisti-
cal average arrival time (time of arrival at S2) , associated with
carriers initially near X5, will provide a measure of how fast or
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slow charge collection from this group of carriers is. Average
arrival time will first be defined as it is defined in statis-
tics. Then an equation will be derived that solves for this
arrival time (in theory) . The equation will then be explicitly
solved, but only for one-dimensional and spherical geometries.
The simple geometries provide a simple illustration of some
interesting statistical and physical concepts regarding the
influence of boundary surfaces. Quantitative results derived for
simple geometries may provide order of magnitude estimates for
some other geometries if we can estimate “effective distances”,
intended to make an irregular geometry conform to a simple geome-
try. Although the analysis eventually specializes to simple
geometries, it begins by treating arbitrary geometries. The
motivation for starting with a general treatment is that one of
the equations to follow looks nice, even when it cannot be solved
analytically. Furthermore, this “nice-looking” equation can be
solved numerically, and provides opportunities for future devel-
opments.

In order to define average arrival time as it is defined in
statistics, we need to find statistical interpretations for some
of the physical quantities. By assumption, all carriers are
initially near the source coordinate, so PI is given by

Pi(x) = n d(x - xs) (lo)

where n is the total number of e-h pairs liberated and 6 is the
Dirac delta function. Q is calculated from (6) with the result

Q = q n fl(xs) .

The total number of liberated minority carriers is n, while the
total number that eventually reach S2 (instead of S1) is Q/q. The
fraction of carriers that eventually reach S2 is fl(xs), so

fuq = probability of a carrier, initially near X5,
eventually reaching S2.
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The current I(t) produced by the n carriers is related to a
probability density or distribution. For some small time interval
6t, the number of carriers that reach
t+dt i.s (1/q)I(t)6t. The fraction of
during this time interval is (1/q)I(t)

(l/q) [I(t)/n] &t = probability

S2 between time t and time
carriers that arrive at S2

&t/n, so

for arrival at S2

between times t and t+6t.

Now consider the subset of carriers that eventually reach S2. The
number of such carriers is nfl(xs) . The fraction of these carriers
that reach S2 between times t and t+6t is I(t)6t/[qnfl(xs)].
Therefore a conditional probability density is

I(t)/[q n n(xs)] =

The average arrival

probability density for the arrival
time at S2 to be t, given that S2

(11)
is eventually reached.

time is denoted T and defined to be the
integral of t multiplied by the probability density for the
arrival time to be t. Using (11) , the definition becomes

I00
T = [q n n(xs))-l t I(t) dt .

0
(12)

Having defined T, the next step is to find a way to solve it,
without literally solving the time dependent diffusion equation
to solve for I(t). This can be done by integrating (la) with
respect to t, from O to m, while using (10) to conclude that the
time integral of P satisfies Poisson’s equation with a delta
function driving term. Therefore

I00
P(x,t) dt =: (n/D) G(x,xs)

o
(13)
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where the Greens function G is defined by

div grad G(x,sLJ = - 6(X - Xs) in substrate (14a)

G(x,xs) = O if x is on S1 or on S2 (14b)

with reflective boundary conditions assumed on the reflective
boundaries. Multiplying (5) by t and integrating and then using
an integration by parts on the right gives

I

w

II

m
tI(t)dt=q ~ P dt d3x

o 0

and (13) gives

~

m
t I(t) dt = q (n/D)

J
fl G(x,XS) d3x . (15)

o

The integral containing the Greens functic)n can be expressed
another way by defining the function U by the boundary value
problem

div grad U(x) = - fl(x) in substrate

u(x) = o if x is on S1 or on S2

with reflective boundary conditions assumed on

(16a)

(16b)

the reflective
boundaries. A familiar application of the divergence theorem
using (14) and (16) will show that the integral on the right side
of (15) is U(xs). Substituting this result into (12) gives

T(xs) = (l/D) U(x~)/~(xs) (17)
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where the argument x~ is now included to emphasize the fact that
T depends on the source coordinate.

Equation (17) is a special form of the nice-looking equation
that was promised (a difficulty discussed below necessitates a
more general form that will be derived later) . This equation
shows that T can be calculated by solving Poissonts equation (16)
for U. This equation requires numerical methc>ds for most geome-
tries, but is easy to solve for one-dimensional and spherical
geometries.

First consider the one-dimensional problem. Let L be the dis-
tance between S1 and S2 (not to be confused with the L in Figures
A5 through A1O), and let x be measured from S2 so that xs is the
distance between the source point and S2. The potential fl is
given by

l-l(x) = 1 - x/]J

and the solution to (16) is

u(x) = (L2/6) [(1. - x/L) - (1 - x/L)3]

so that (17) becomes

T(xS) = L xs/(3D) - xs2/(6D) (one-dimensional) . (18)

Now consider the spherical problem in which S1 and S2 are
concentric hemispheres below a horizontal reflective plane. Let

‘i be the radius of Si (i=l,2) and assume that r1>r2. Let r be
the radial coordinate of an arbitrary point so that

n = [rl r2/(rl - r 2)] [l/r - I/rll

14
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and the solution to (16) is

U(r) = (1/6) [r2/(rl - r2)] [(r - rl) (r - 2r1)

+ r2 (2r1 - r2) (1 - rl/r)l

and (17) becomes

T(rs) = [(r2 - r1)2 - (rs - r1)2]/(6D) .

If we let x~=rs-r2 be the distance from source to S2, and L5rl-r2
be the distance from S2 to S1, the equation becomes

T(xS) = L xs/(3D) - x~2/(6D) (spherical) . (19)

Note that we could have started with the slightly more complicat-
ed spherical problem and then derive the one-dimensional result
by letting r, rl, and r2 go to infinity in such a way that L and

Xs are constant.

It is interesting that the average arrival time depends not
only on the source to destination distance xs, but also on L. The
fact that T depends on other geometric parameters in addition to
xs could have been anticipated on a macroscopic level by thinking
of the heat equation, which is the same diffusion equation that
we are treating. The source coordinate is an initial hot spot
while the sinks are cold contacts. The collection time for heat
flux through S2 is correlated to how fast the device is cooling
off, because the heat flux at any point dies out fast if the
device cools off fast. The rate of device cooling is strongly
influenced by device geometry, so the time duration of heat flow
through S2 depends on geometry. If we decrease L in (19) (the
smallest allowed value is xs) , we find that T decreases because
the device cools off faster. From a microscopic point of view
(and considering carriers again instead of heat), the location of
S1 affects the carrier population that defines the statistics.
Carriers that reach S1 are eliminated and CIO not contribute to
the average arrival time at S2. If S1 is close to the source
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coordinate, the carriers that reach S2 take a relatively direct
route (their random walks do not zig-zag back and fourth across
S1) and the average arrival time is relatively short.

Equation (19) has an unfortunate property if we let L-. The
average arrival time increases without bound, even if xs is fixed
when taking this limit. The physical explanation is that a small
fraction of carriers arrive very late. The arrival time is large
enough to more than compensate for the smallness of this fraction
of carriers, in the sense that this negligible fraction is
strongly influencing the average arrival time. The statistical
explanation is that the distribution (11) is so skewed (it de-
creases so slowly with increasing t) that it does not have a
mean. If L is finite (so that T is finite) but very large (so
that T is unphysical), then T has a precise statistical meaning
but no physical meaning.

The carriers that arrive very late are so few in number that
they have little physical significance, and their only effect is
to make average arrival time physically meaningless when L is
large. One way out of this problem is to simply ignore some of

“ the late arrivals. For example, we might ignore the last 10% of
the carriers when estimating average arrival time. One obvious
objection to this approach is that the selected fraction is
arbitrary. (Why 10% instead of 5%?) But we are going to have to
be willing to accept some arbitrariness. Even if the time depend-
ent diffusion equation was completely solved and collected charge
was plotted as a function of time, some ad hoc criterion is still
needed in order to obtain a single number that represents charge
collection time. Given that some arbitrariness is unavoidable,
the primary problem with selecting some fraction is that the
resulting average arrival time is too difficult to calculate,
unless we completely solve the equations. Another approach that
produces a similar end result, but leads to a simpler analysis,
is to include an artificial recombination term in the diffusion
equation. Recombination automatically eliminates most carriers
that would otherwise arrive very late. Using an appropriately
selected lifetime r, we can obtain an end result that is similar
to neglecting the last such-and-such fracticm of carriers when
computing average arrival time.

Selection of a value for T
time being, ~ is an arbitrary
associated with T, is defined

is postponed until later. For the
constant. Average arrival time TT,
by first modifying (1) so that it

16



, ,

becomes

D div grad P~ = (1/~ + &/6t) P~ in substrate (20a)

PT=O on S1 and on S2
(20b)

PT=P1=n&(x-xs) a t t = O . (20C)

The current and collected charge are defined by

I~(t) = -qD
I
grad P~ ● ds

S2

~

00
QT = I~(t) dt .

0

The average arrival time is defined by

T T = (l/QT)
co

t IT(t) dt .
0

(21)

(22)

(23)

The denominator in (23) is the total number of carriers (times q)
that eventually reach S2, so TT is derived from a conditional
probability density similar to (11). Therefore, TT has a precise
statistical interpretation as a mean arrival time. But this mean
refers to a population of carriers that are subject to recombina-
tion, which eliminates most of the carriers that would otherwise
arrive very late (and a few that would otherwise arrive early).

The quantities P, I, and Q without the ~ subscript are defined
by the infinite lifetime equations in Section 2. It is easy to
show that the solution to (20) is
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so that (21) gives

,

P~ = e-t/T P

I~(t) = e‘t/T I(t) . (24)

Regarding IT(t) as a function of 7, differentiating (24) gives

61~(t)/8(1/~)  = - t ~-t/7 I(t) = - t 17(t)

so that (23) becomes

TT=- (l/QT) ~QT/~(l/T) . (25)

We can solve for Q~ by first defining fl~ by the boundary value
problem

D div grad flr = (1/T) SIT in substrate (26a)

n~=o on S1 and 11~ = 1 on S2 . (26b)

A familiar application of the divergence thec>rem using (20) and
(26) gives

- (l/q) IT(t) =  
D I grad P~  ● ds =

I
fJ~ 6PT/6t d3x

S2

so (22) becomes

QT=q I JnT PI d3x = q n n~ 6(x - xs) d3x



or

(2T =  q n  ‘T(xs) (27)

and ( 25) becomes

T~(xs) = - [l/n* (xs)] ~n~(x~)/~(1/7)  . (28)

Equation (28) is the general form of the nice-looking equation
that was promised. Although incidental to this discussion, it is
interesting that higher statistical moments (e.g., variance) can
be derived in a similar way, with the result expressed in terms
of higher l/~ derivatives. Equation (28) can be made to look more
like the special case (17) if we define UT by

UT(X) = - D 6flT(X)/6(1/T)

By differentiating (26) with respect to l/T, we conclude
can also be calculated from the boundary value problem

D div grad UT - (1/T) UT = - D fl~ in substrate

UT=O on S1 and on S2

which is the generalization of (16). The equation for T~
becomes

(29)

that UT

(30a)

(30b)

finally

TT (Xs)
= 
(l/D) UT (Xs) /n~ (Xs) . (31)

To solve for the average arrival time, we have the option of
solving UT from the boundary value problem (30), or by taking the
1/7 derivative in (29).
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An explicit solution will now be derived for the same spherical
problem that (19) applies to. As before, we let L=rl-r2 be the
distance from S1 to S2, and xs=rs-r2

be the distance between the
source coordinate and S2. An additional relevant length is the
diffusion length LD defined by

The solution to (26) is given by

nT = (r2/r) [Sinh(L/LD)]-l Sinh(rl/LD -  r/LD) .

(32)

(33)

We can use (29) to solve for UT. It is convenient to use (32) and
the chain rule to express the derivative in (29) as

6/i$(l/T) = (1/2)(LD/D) L$/~(l/LD)

and using (33) gives

UT = (LD/2) fl~ [L coth(L/LD)  - (r~ - r) coth(r~/LD  - r/LD)]

so that (31) gives

TT (Xs)
= (1/2)(LD2/D) [(L/LD) coth(L/LD)

- (L/LD -  XS/IJD) coth(L/LD  - xs/LD)]  ● (34)

By taking the limit as rl, r2, and rs become infinite with L and

Xs fixed, we conclude that (34) also applies to the one-
dimensional problem.

Note that if we first use (27) to solve for Q~ as a function of
r, we can then use Laplace transforms with (22) and (24) to solve
for I as a function of t. But the objective here is simpler. We
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are looking for a single number that estimates the time duration
of charge collection at S2, and is obtained by selecting a defi-
nite T to be used in the average arrival time given by (34).
Recombination was artificially included to eliminate the small
population of carriers that would otherwise arrive very late and
strongly influence the average arrival time. A good value for T
is a value such that most carriers heading towards S2 do not
recombine, while most of the small population that would other-
wise arrive very late do. This suggests that ~ should be selected
so that the diffusion length is several times the distance from
source to destination. The charge collection time Tc is defined
to be T~ when T is selected so that L1)=2xs. The result is

TC(XS) = (2xs2/D) [(L/2xs) coth(L/2xs)

- (L/2xs - 1/2) coth(L/2xs - 1/2)] . (35)

Two limiting cases are interesting. We first consider the large
L limit. When taking this limit, it is helpful to note that the
two hyperbolic functions approach each other (and approach 1)
faster than L increases, so that the L’s in the square brackets
subtract out. The result is

Tc + (2xs2/D) [1/2) = Xs2/D as L- 00 . (36)

The right side of (36) is a traditional estimate of the charge
collection time. In the opposite extreme, we let L approach its
smallest allowed value, which is xs. This limit also applies if
we regard L as fixed and move the source coordinate towards S1.
The result is

TC + (2xs2/D)  [(1/2) coth(l/2) - 1] x xs2/6D as L + xs . (37)

Comparing (37) to the same limit applied to (19), we find that
the artificial recombination has little effect on the average
arrival time in this limit, indicating that the few late arrivals
do not strongly influence average arrival time in this limit.
Note that charge collection is six times faster, in this limit,
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than indicated by the more traditional estimate x~2/D. This is
due to the influence of boundary surfaces. In the analogous heat
problem discussed earlier, we can say that the rapid device
cooling induced by the cold contacts shortens the time duration
of heat flow to S2.

6. Nonlinear Effects

Diffusion may adequately describe charge collection in some
devices (e.g., DRAMs [8]) even when the ion LET is so large that
the carrier density exceeds the doping density over an extended
spatial region and time interval. The ambipol.ar diffusion equa-
tion is most likely to be used in this case, i.e., the D in (la)
is the ambipolar diffusion coefficient. Some investigators will
insist that neglecting carrier-carrier scattering (CCS) is a big
mistake. The purpose of this discussion is to point out that
including CCS is a bigger mistake, if it is not treated consist-

ently. CCS affects carrier mobility, but a cc)nsistent treatment
recognizes that CCS also modifies the Einstein relation used to
calculate diffusion coefficients from nobilities. A theoretical
analysis [9] has shown that the end result is that the ambipolar
diffusion coefficient is not affected by CCS. This result can be
intuitively guessed if we visualize ambipolar diffusion as a
process in which electrons and holes move together in an average
sense (in reality, electrons and holes do not always move togeth-
er during ambipolar diffusion [5,10], but they do in some special
cases and that is good enough for this discussion) . We would not
expect collisions between carriers to affect their average mo-
tions when both types of carriers have the same average motion.
Failure to modify the Einstein relation can result in unphysical
predictions, such as tracks being “frozen” for an extended time,
as if the carriers were immobile until recombination reduces the
population. This is mentioned because some computer simulation
results have made such predictions. It is better to completely
ignore CCS than to include it in one calculation but not in
another. If CCS is treated consistently, we should get the same
diffusion equation that we get by consistently neglecting CCS,
which is the simplest approach.

All discussion in the previous sections regarding recombination
in the substrate interior tacitly referred to Shockley-Read-Hall
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recombination (SRHR) . Another type is Auger recombination (AR).
Although extremely nonlinear, AR may be easier to treat than SRHR
if certain required data are available. A theoretical analysis
[11] concludes that AR accompanying an expanding (diffusing)
track has such a short time duration that the end result is the
same as if there was no AR but the initial track density was
smaller, i.e., as if the ion had a reduced LET. For a given ion
species and energy combination (ISEC) , the “reduced LET” should
be a material property, dependent on AR lifetime but not on
geometry. This means that reduced LET is well defined, i.e., we
can associate a reduced LET with a given ISEC in a given material
just like we can associate a regular LET with a given ISEC in a
given material. Tabulation of reduced LET, derived from computer
simulations and/or measurements, may not be too formidable if AR
is important for a sufficiently narrow range of ISEC’S. Further
discussion is beyond the scope of this paper. It is enough to
point out that a simple diffusion analysis, such as given here,
can probably include AR if the required data (reduced LET) are
available.

Another nonl
carriers flood
of the applied

inear effect is “funneling”, which occurs when
a DR and cause it to collapse. Some or nearly all
voltage plus built-in potential normally across

the DR is now across the substrate. The substrate electric field
can enhance charge collection. A steady-state version of the
problem was solved fairly rigorously [5], and provided insights
into the transient problem that were confirmed by computer simu-
lations. But the analysis was quite complex, largely because the
potential drop (actual potential, not fl) is divided between the
DR, the portion of substrate containing the track, and the por-
tion of substrate below the track. As transient charge collection
proceeds, the DR is recovering and the track length is shrinking
(an important effect if the track is long enough to reach the
lower electrode) and the potential distribution becomes very com-
plex. A convincing transient analysjs will probably not be much
simpler than the steady-state analysis, so it is not surprising
that the simple transient models that presently exist are too
simple. The transient problem has not yet been adequately solved
and it is not yet clear what role diffusion calculations will
play in the analysis. Diffusion can induce funneling under
steady-state conditions [5] and under transient conditions
[6,12], so it will clearly play some role in the transient prob-
lem. In the steady-state problem, diffusion calculations are not
enough but are still needed. Although not enough, having diffu-
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sion current estimates for the transient problem must surely be
better than not having them.

7. Recommendations for Future WOW

The list of figures in the appendix is limited, and the use of
simple analytic expressions limits the calculation of n to some
rather special geometries. A more extensive set of figures ob-
tained from modern numerical methods would be a useful contribu-
tion. Computer calculations can treat geometries that are better
representations of some of the more common geometries found in
actual devices. Three-dimensional geometries can be pictorially
represented by plots in several planes, having the same orienta-
tions but translated relative to each other (the track can be
approximated as a set of discrete points if it cannot be sketched
into a figure) . Recombination can also be included if the life-
time ~ is approximated as a constant and (4) is replaced with
(26) . Although (26) is more difficult to solve analytically in
three dimensions than (4), it is not a difficult equation if
numerical methods are used. The primary disadvantage of (26) is
that it introduces another parameter. In addition to several
geometric dimensions, we now have another dimension; diffusion
length. This means that a set of figures that could be called
extensive would contain many pages. But they should be easy to
make if the required computer codes are available.

24



REFERENCES

[1] s. Wouters, Diffusion-Based Silicon Radiation Detectors,
Delft University Press, 1992.

[2] S. Kirkpatrick, “Modeling Diffusion and Collection of Charge
from Ionizing Radiation in Silicon Devices,” IEEE Transactions on
Electron Devices, VO1.ED-26, no.11, pp.1742-1753, November 1979.

[3] C. Hsieh, P. Murley, and R. O’Brien, “A Field-Funneling
Effect on the Collection of Alpha-Particle-Generated Carriers in
Silicon Devices,” IEEE Electron Device Letters, vol.EDL-2,  no.4,
pp.103-105, April 1981.

[4] T. Oldham, F. McLean, and J. Hartman, “Revised Funnel Calcu-

lations for Heavy Particles wit-h High dE/dx,” IEEE Transactions
on Nuclear Science, VO1.33, no.6, PP.1646-16501  December 1986.

[5] L. Edmonds, A Theoretical Analvsis of Steady-State Photocur-
rents in SimDle Silicon Diodes, Jet Propulsion Laboratory Publi-
cation 95-10, March 1995.

[6] L. Edmonds, “Charge Collected by Diffusion from an Ion Track
under Mixed Boundary Conditions,” IEEE Transactions on Nuclear
Science, VO1.38, no.2, PP.834-837,  April 1991.

[7] P. Morse and H. Feshbach, Methods of Theoretical Phvsics,
McGraw-Hill, p.1317, 1953.

[8] J. Zoutendyk, L. Edmonds, and L. Smith, “Characterization of
Multiple-Bit Errors from Single-Ion Tracks in Integrated Cir-
cuits,” IEEE Transactions on Nuclear Science, VO1.NS-36, no.6j
December 1989.

[9] T. Mnatsakanov, I. Rostovtsev,  and N. p~lilatov, “lnvestiga-
tion of the Effect of Nonlinear Physical Phenomena on Charge
Carrier Transport in Semiconductor Devices,” Solid-State Elec-
tronics, VO1.30, no.6, pp.579-585, 1987.

[10] O. Roos, “A Note on Photocurrents i.n Extrinsic Semiconduc-
tors,” Solid-State Electronics, VO1.22, PP.229-232, 1979.

[11] L. Edmonds, “Theoretical Prediction of the Impact of Auger

25



,

Recombination on Charge Collection from an Ion Track,ll IEEE
Transactions on Nuclear Science, VO1.38, no,5, pp.999-1004,
October 1991.

[12] L. Edmonds, “A Simple Estimate of Funneling-Assisted Charge
Collection,”l IEEE Transactions on Nuclear Science, VO1.38, no.2,
pp.828-833, April 1991.

26



APPENDIX

27



, r r~——

1 . 0  ——.— — — . I
1 \“”’.. ;..$..g””,...’’””,  : /
\ . . = /.. ”,,“.~.  , /:

\ \ ‘“. \ “,.... “.....cj;:.””””” ””;””’”; 1 ,.: I : I
\ \ ““”. \ . . I; I
\ “. \ ““”... = % -o:4_o- - ‘ . ..” / /“. I\ . . \ . . . . . .. . “.......”””””””””...... ””””””””” ‘  .“””” /\ ‘. \ / .. /

\ ‘. \
. . \ = .-0.25 ~ / 0 ‘ ,..””” /

\ . . . . - - - -. . . . . /\ . . . . . . . .
““”... egg,”””””””””””””””””””””

/\ . . . . . . . . . /\ /
\ /
\ .-\ /% \

---- 0 . 1 5  _ +  ’ -- - -. .
“.

. . . . .
. . . . . . . . . ,, . . . . . . . . . . . ,... . . . . . ..”

. . . .

. . . . . . . 0 ~ o
,. ...,

““.  . . . . . . . . .
. . . . . .

. . . . . . . . .. . . . . . . . . . . . . . . . .

.“
. .

. .
.’

. .
. .

. .
. .

. . .
,..

,..
. . .

,..

DI = 4 min. div.

, , 1 , t , , 1 k 1~..u...—.~

Figure Al: An isolated disk. The sink S1 is at infinity.



$

, , r I —————1

i n

1
\ $..

I I . . . . . .\ . . . . . . . . ~ ~~ . ..-”””.’ : , / /. . . . . . . . . . . .. . . . . . . . . . . . .I I “. I . . . . . ...””
\ ““”. ‘%. - / ..”

I \ \ ““...
\ ““”... _ _Od6_5_ _ - a ~ ,...”” ,1 ;“ ,! :

I \ “.. \ . . . .
\ ““.. \ ““...

.“. . .
\ . . . . . “........0 50 . . . . . . ...””””””””””””. ‘ ,,.”’ // :\ . . . . . . . . . . . . . .\ “. \ / .’,. .“

\ . . \ ““... ‘ = . - _od4(j _ - - .“”” / .!“.
\ “. . . .

\ ““’... - - - ,..“. / .“”. . . .“
\ . . \ ““. . . . n  nn . ...” / . .\ . . . . . . . .“. . . . . . ..u...~.~  . . . . . . . . ...”””
\ \ /

“. / .“

. . \ 0 .“

\

/
. . . \

. .

. . . %

\
-.. . . - - 0 2 2 5  - - - - -  ‘  ,,...’””” /  ‘. . .\ . . . ... . . . . . . . . ..g..2g . . . . . . . . . . . ...’”””””””’’””’”

/“. \ . . . . . . . . . .‘. \ /
. . /

“. \
“. \

/

. . \
/

. . - . /

“. ‘+ - = - o = ~ - 5 _ . . - = -“. . . . . . . . .
. .. .. .

. .
.“

.“

I
I

I
I

I
I

I
/

. .. .
.“

. .

... . ,.. ”
. . . . ,.,

. . . . . .
. . . ,..

. . .
. . .

. . . .
. . . . .

. . . . . . . . ..,...,J,O., . . . . ...”.......”””’”’”’”””””’”
DI = 8 min. div. SP\DI = 1

1 1 , I t 1 , I 1 I~~~~~

Figure A2a: Disk with diameter DI surrounded by a sink with
lateral separation SP=DI. First of two views.



0.100

i
0.000

I ‘:.?.:<..
I ..\”.  ~..

: \ “... ;...
I ;1”. . . \“”.
Iil “...  \ “..,, \“ “...,
I(I “: \ . .. \ “..

I :1: I “... \ “’..
/:1:1:,”.””/ :/ ! ‘ : \ “.,

/ .“””/ \ ; : I
/.””, : I

/ .“

/
., I. ..” / .; ,’ ;

. . . . . . . . . . . . .
I \ / .“

0 . . J
L -. \

. . \
/ . .

. . . \

. . . - - - _ _O.025 ---0 ,..””’”. . . - - -  - - . . .. . . . . . .. . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . ..0.02 ~..............””””””””””’”

DI = 4 min. div. SP\DI = 1

I 1 1 1 , 1 1 ~.~.- ——L---L----I---- 1 1 1 1 1 J

Figure A2b: Disk with diameter DI surrounded by a sink with
lateral separation SP=DI. Second of two views.



\ ,

r r , 1 r r r

1.0 — —  .
. . . . .\ . . . .

t “. . . . . . . . .
$ \

O 80. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . ...”””’”\
““”” , ;. , . I

\ “. <“.\ N 0665 - Ha ‘ . ..””’ ,1 : ,1 ;\ “ . . . . . ‘___“.\ - - - - . .. . \ ‘“”...
.’. .“. . .

\ ‘. “. \ ““”””  . . . . . . . . . . . . ..0.. ?.9 . . ...”””””””””””””””””” / / ,.”” ,’ ;\ “.. . \“. / .“. . \ < . .. .‘. h. .“. \ ... . ‘- - _o.40 z -0 ‘ ,...””””  /’ ,:. . ——- -“. ... . . . . / . .
. . \ . . . . .

. . \ . . . . . . . . . . . .. . . . . . . ...0..32...........””””””’”’”””” / ‘ .“’””“. \ .““.i \ / . .. . \ / .“
\ . . \ /. . . . <

\ . . . - - - - 0.25 _ --- = ‘ ,..’”””” /--. —. . . .
\ . . .,’” /. . ,... . . . . . . .

\ /‘. ..,. . ...”
\ . . . . . . . . . . . 0.20 . . ...”,, . . . /. . . . . . . . . . . . . . . . . . . . . . . . .\ /

\ /
\ /

\ /\ /\ ‘. ‘___ 0 . 1 5  -=-0- - - -  - -

DI = 8 min. div. SP\DI = 2
I I 1 1 1 t 1 1 1 L ~J~_l-..__~.~

Figure A3a: Disk with diameter DI surrounded by a sink with
lateral separation SP=2DI. First of three views.



I t , , , r , I , r , , r I

l..
t ;“

/;  :
.1.“ ,

I \
I ‘, “! \
I \
I \ ““,. \

\ ‘“...I \
“. .

I \ . . \
I ““.. \

\ \
“. \ ‘“... \

:,
J).150- - -

““..  \ -
1/ !

/j
I

/;\ 1

/;\ 1:
/ 1 ‘.

. . /:,

/ .“
. . /!,/ .“

0 .“ /:
0 .“

-“ .’ / :’ ,’ :. .\ . . \ . .. . . .
\

/ .“
“. . . .

y

\ 1
1;. . \ ““””... . . / ““’

\ “.
.“

. .
. . \ . . .

\
. . . .. .

\ ““’” . . .. U?OU””........” ”..””””””””””””  / / ,..””” ,,~ ,/“.

\
“. \ / .“

“.
.“

\ / . .
. . . .

\
,.,

“. < N - -~.080 - / a ‘ .,..””” ,’ .:;. . .“. \ - - -. .. . . . . . . . .. . .. . \ . . .
. . . . . . . . ...0..065............”””””””””””””

/ . .“. . . . . . .““. \ / .“
\ “. .““. N / .“

\ . . A / . .< 0. . .“ /’
\ . . K. . . 0 050 -- = - ‘ ..”””””\ =- +_. /. . . --. — --. . . ..”” /

\ . . . . . .
“.. ., . . .

\ . . . . /. . . . . . . ...’. . . . . . . . . . . . 0.040
/

\ . . . ..- .. . . . . .
\ . . . . . . . . . . . . . . . . . . . . . . . . . . . /

/
\ \ /-

N
.

- - - - 0 . 0 3 2  ----<’- - —  - -

Figure A3b: Disk with diameter DI surrounded by a sink with
lateral separation SP=2DI. Second of three views.



.

““”:. ””4.”/..””/
\.~ .,. Y-’.“.. .< . .

L

— . 0.0—. ———
,..<::, >,. ~. ..- . ..\.. “?. .

..””/ .“”/::l \ “..: ‘... - \..
.’” ’/ .,”” / : , \ . . \ . \...

.“””/ ;“ f / ,
“.

, ““.., \ . . \ “..,

.“””/ : I j , I : \ ““... , “
.“

“.

.“ /:1:, I : I ‘. \ ““... .
//1:, / j ‘ “i

1 :
\ “..,..

\
1 “1/: 1”., /;’;

I I \
//1:

I \ ““’. \ /;’: I
I \ ““”. \ / .’ ‘ ; I
I I ““’. \ /“””/;. . I
\ . . \ ““”... ‘ A + ~3.2E–2~ a a ‘ .,..’” ,’ :“ /

\ . .“. \ ““.., - - -  - I
\ . . . .

\ ““” . . . . . . . /“. . . . ...2 5E–2 . ...-””””””””””. / ..””” I
\ . . \ . . . . . . . . . . . . . . . .“. \ . . /

\ ‘. \ / . . ,

P
. . . = ~ _ 2. OE–Z. --0 .“” I

\ . . . - - - -  -

1

/;... .\
,..,... . / :“. .“. \ . . . “.. .. .

““””” .. L’.%2”””””””””” ””””””.”””””””
/ ,.:. . . . . . . .. . \“. / . ..”

“. \ . .‘. \ / .“. . / . .“. N , .’
L “. \

.

. . 0- . .
x 0 . .

x. . . .
. . ‘--- 1.OE–2 + -0 ‘ . ..”””. . . - - -  - -. . . ,... . . . .. . . . . ..””. . . . . . . . . . . . . . . . . . . . . . 8.OE–3 . . ...+””’’”””””””. . . . . . . . . . . . . . . . . . . . . . . ...”

t
DI = 2 min. div. SP\DI = 2

i

Figure A3c: Disk with diameter DI surrounded by a sink with
lateral separation SP=2DI. Third of three views.



, , , I —— r

t
$

\ ““””” . . . . . . . . . O 80
. ..” / . ”:\ \ . . ...”. . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . \ /;lj i

\ \ ““. ,.Y
\ 0.65 H ‘ ““ II ~ ,1\ ““.. .--+ -____ -#-- . ...” , ;“.I . . \ ‘“””... . .“. f

\ ‘. \ ““”” . . . . . . . . .. . ““”””’..w””””””””””””””””””””””””’”  // .,.””
/

\ . . \ .““. N / /
\ .““. N . 0.40 ..-” ..”””’

/
\ . . . ‘-. . . /. . - - - -  - - -\ ,.. . . . . . .“. . ..” /. . \ . . . . .“. . . . . . . . . . . . 0.32 ,,,..,...  ””””””” /“. \ . . . . . . . . . . . . . . . . . . . . .. . /\ /

.“
. .

.“

\. . /
“. \ /

. . . \
\ - -  0 . 2 5  -~--z

. .. . . . .‘- . .. . ——- -- ,... . . . ,... . . . . . ..””. . . . . .... . ,..
\ ‘. ...,

\ . . . . . . . . . . . . 0.20 .,,, . ...”””. . . . ...”
\ . . . . . . . . . . . . . . . . . . . . . .

/
/

/\
\ /
\ 0

\
/

\
/

\
.

/

‘. - - - - 0.15 J--”---- --
DI = 8 min. div. SP\DI = 4

Figure A4a: Disk with diameter DI surrounded by a sink with
lateral separation SP=4DI. First of four views.



, , , r I ————————~

\
\ . .

“ .

\
“.

“.

\
. .

“.

—.

I I
\
\ ‘:,
\ I, “.

\ “.
“.

\ “.

I
/

.“
/.“

.“
/.“ !’/I

. .

\
“.

“. .“ /

\ ‘“’ . . . . . . . ./ 1.

‘% . . ...0.200 ‘“’””””” / .“

\
. . . . /

/..  . .“

\ . . . . . . . . . .. $””” . ./ /. .
\ / .“ /

\
“.

\ .“
. .

\
\ - -  0 . 1 5 0  ~-” /. .

. . - - -  - - /
\ . .

“. . . . . . / .“
“.

\ . . . ,.. . .
“. . . . . . . . / .“

“. \
,..

. . . .’
“. . . . . . / .“

. . \ “..  ...
‘.

. . . . . . . . ..o.~h lop............”’”””””””””” / . .\ . . . . . .“

“. \
/ .“

. . 0 .’
A . .

. . \
/’ . .

,. >
/ . .

. . >
/ . . .

. . .

\ c -..=--- a
. . . J=UHU /“ . .,._ — .  - /. . . . . .

\ . . . ,.. /. . . . . . ,..
\ . . . .. . . .

““”...:. o~5,,, ””””,””””””””’’..”””’”””

/
\ “.. . . . . . .

. . . . . . /
\ /
\ 0
\ /
\ /
\
\

/

%
/

‘-
‘- __o.050 _----=—-— -

DI = 4 min. div. SP\DI = 4
1 I 1 1 , 1 1 1 , L—_--L-.I--I ——__l--_.J_--.L. 1 1 1 1

Figure A4b: Disk with diameter DI surrounded by a sink with
lateral separation SP=4DI. Second of four views.
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Figure A4c: Disk with diameter DI surrounded by a sink with
lateral separation SP=4DI. Third of four views.
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Figure A4d: Disk with diameter DI surrounded by a sink with
lateral separation SP=4DI. Fourth of four views.
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